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Abstract

The glucocorticoid hormone cortisol is essential for many forms of regulatory physiology and for cognitive appraisal. Cortisol, while

associated with fear and stress response, is also the hormone of energy metabolism and it coordinates behavioral adaptation to the

environmental and internal conditions through the regulation of many neurotransmitters and neural circuits. Cortisol has diverse effects on

many neuropeptide and neurotransmitter systems thus affecting functional brain systems. As a result, cortisol affects numerous cognitive

domains including attention, perception, memory, and emotional processing. When certain pathological emotional states are present, cortisol

may have a role in differential activation of brain regions, particularly suppression of hippocampal activation, enhancement of amygdala

activity, and dendritic reshaping in these regions as well as in the ventral prefrontal cortex. The coordinated actions of glucocorticoid

regulation on various brain systems such as those implicated in emotional processing can lead to perceptual and cognitive adaptations and

distortions of events that may be relevant for understanding mood disorders.

q 2003 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Cortisol (corticosterone in rats) is a glucocorticoid

hormone secreted by the adrenal gland into the bloodstream,

and acts on numerous areas of the body. In some regions of

the brain glucocorticoids have well-known inhibitory effects

[1–3], such as restraint of the hypothalamic-pituitary–

adrenal (HPA) axis and suppression of hippocampal glucose

metabolism and blood flow [4,5]. It also appears that

glucocorticoids increase activation in some other areas of

the brain, such as the amygdala [2,6,7], suggesting
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site-specific effects of glucocorticoid activation that have

implications for behavioral and cognitive functions sub-

served by these brain regions. This review highlights the

accumulating evidence that glucocorticoid dysfunction may

contribute to the pathology of mood disorders through

activation in extrahypothalamic regions.

Distribution of mineralocorticoid (MR) and glucocorti-

coid (GR) receptors have been described in the primate

amygdala, hippocampus, medial prefrontal and orbitofron-

tal cortical areas [8,9]. These same regions putatively

underlie perception, memory and experience of emotional

events. Cortisol serves a wide range of physiological,

behavioral and cognitive functions and can be elevated in a

number of contexts that may or may not be ‘stressful’ in the

aversive sense of the term, such as territoriality, attachment

behaviors, food intake, predatory behaviors, focused atten-

tion, social presentation, sustained effort and effortful

thought (see Fig. 1) [10–12]. Therefore, it might be more

accurate with regard to its influence on some brain regions

to describe cortisol’s effects in terms of ‘readiness to

behave’ or as part of cognitive appraisal mechanisms. It is

possible that the effects of cortisol on neurotransmitters and

neuropeptides within various functional circuits can influ-

ence perception, attention and memory for environmental

events.

In recent years, cortisol has been characterized as a

‘stress hormone,’ and elevated cortisol levels are sometimes

considered synonymous with stress in certain areas of Ref.

[13]. Indeed, cortisol is elevated in individuals under duress

in order to allow physiological and cognitive response to

stressful situations [14]. However, the characterization of

cortisol as a ‘stress hormone’ is only partly accurate.

Elevated peripheral cortisol levels are not necessarily an

indicator of stress; subgroups of healthy individuals can

have elevated basal cortisol concentrations [15,16], as can

individuals with certain physical and psychiatric conditions

[17–19]. Cortisol may differentially affect certain neuro-

transmitters and brain areas in both psychiatrically healthy

individuals and patients with various mood disorders, and

these effects may be distinct in healthy versus ill

populations. The disparate effects of glucocorticoids on

the various brain regions have potential relevance to

Fig. 1. The diverse effects of glucocorticoids on neuropeptides, classical neurotransmitters, and subsequent psychological and behavioral effects. The structural

depiction in the lower left describes corticosterone in the rat.
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understanding normal behavioral adaptation and the cogni-

tive mechanisms underlying them, and may also have

relevance to the pathophysiology of mood disorders. This

paper overviews the interactions of glucocorticoids with

neurophysiological, endocrine, behavioral and cognitive

functioning, and discusses implications of these findings for

mood disordered populations.

1.1. From systemic physiology to the organization

of behavior

Regulation of glucose and mineral availability are

necessary to sustain life. Glucocorticoids regulate glucose

metabolism, while mineralocorticoids regulate sodium

metabolism. In the brain endogenous cortisol acts on both

MRs and GRs within various functional systems, with MRs

displaying higher affinity for cortisol than GRs such that at

basal conditions glucocorticoids primarily bind to MRs, and

GRs become occupied when glucocorticoid levels increase

[20]. Species differences in the distribution of MRs and GRs

are prominent; receptor distribution tends to be limited to

specific brain areas in lower animals [9] but are distributed

widely throughout the primate brain [8,21–23]. Addition-

ally, the primate hippocampus expresses fewer GRs than the

rat hippocampus, and also expresses high levels of MRs [8].

At the cellular level cortisol exerts genomic actions

through translation of mRNAs, and these genomic effects

are important for the production of various neurotransmit-

ters and neuropeptides [24]. A single GR gene has been

identified in humans [25]. GR expression is regulated by a

number of transcription factors through many unique

binding sites (as many as fifteen) [25], which may allow

the differential regulation of GR protein expression under

varying conditions. Although these genomic effects are

relatively slow, rapid steroid effects that could not be

accounted for through genomic actions also exist, which

presumably are effective when fast cognitive appraisals of

the environment are needed [26–30]. Fast (msec) mem-

brane effects of cortisol may be the result of rapid

modulation of membrane-associated receptor proteins

[31]. The functional roles of cortisol’s membrane actions

are less clear but some evidence indicates a link to rapid

changes in monoamine levels [32].

Cortisol is part of a fundamental system engaged in a

wide range of regulatory functions within various anatom-

ical sites. Fig. 1 illustrates that, within the brain, cortisol

apparently participates in the regulation of various neuro-

peptide systems such as corticotropin-releasing hormone

(CRH) [2,33] and neuropeptide Y [12], and neurotransmitter

systems such as serotonin [34], norepinephrine [35],

dopamine [36], acetylcholine [37], and glutamate [38].

The effects on these systems influence psychological states

that inform the animal of needs for preserving physiological

homeostasis [39]. Through interactions with these neuro-

chemical systems, glucocorticoids exert a wide range of

effects on basic appetitive behaviors such as hunger, thirst,

and drug intake. Finally, glucocorticoids may also influence

the production of emotional and social behaviors such as

attachment, temperament and mood.

The physiological, cognitive and behavioral effects of

cortisol appear to act in a curvilinear, or ‘inverted U-

shaped,’ fashion on many physiological and cognitive

systems, in which moderate levels are optimal while

extremely low or high concentrations each have distinct

adverse behavioral or cognitive outcomes [28,40]. For

example, when cortisol levels are extremely low or high the

central state of hunger is reduced, while modestly elevated

levels can induce the central state of hunger [12,41]. The

central states influenced by the actions of cortisol on

functional systems increases the likelihood of performing

certain behaviors in suitable environments [12].

1.2. Glucocorticoids, dopamine, salience and the prediction

of reward

The interactions of the glucocorticoid and dopamine

systems illustrate the diverse effects of glucocorticoids on

neurotransmitter systems. Glucocorticoids can influence

dopamine activity in the brain, and both glucocorticoids and

dopamine appear to work in concert across various

functional systems. Modest glucocorticoid elevations can

have facillitory effects on appetetive systems, in part

through influencing dopaminergic neurons [42–44]. Rats

will exert modest effort (via bar press) in order to self-

administer corticosterone, suggesting that glucocorticoid

effects may be intrinsically motivating [45]. Some healthy

human subjects initially report feelings of euphoria follow-

ing cortisol and dexamethasone injections, similar to

receiving a dose of adrenaline [46,47], and glucocorticoids

can induce euphoria and hypomania during chronic

treatment [46,48,49]. A small subset of people report

mood elevation or ‘giddiness’ after 5-day prednisone

treatment [50].

The cortisol elevation in animals during search and

subsequent reward suggests that glucocorticoids are likely

acting on a number of experiential aspects, which

encompass arousal, orientation in the environment, and

memory for previous sources of reward [51,52]. Rats that

are ‘high responders’ in drug self-administration paradigms

tend to have higher levels of endogenous glucocorticoids

than those that are ‘low responders’, despite a high rate of

variability between animals [53]; adrenelectomy reduces

the rates of drug self-administration [54]. Glucocorticoids

may alter dopamine transmission in specific sites, poten-

tially generating these behavioral effects of drug adminis-

tration [53] because of dopamine’s role in signaling the

salience for and learning of rewarding objects [55,56]. In

rats who are ‘high responders’ glucocorticoids apparently

increase dopamine synthesis in the nucleus accumbens,

where dopamine release plays a role in modulating both

reward-related learning and psychomotor activity [57]. In

adrenaliectomized rats, extracellular dopamine is decreased
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in the shell of the nucleus accumbens [42]. Also, in the

medial prefrontal cortex, chronic corticosterone adminis-

tration can increase dopamine turnover, as demonstrated by

homovanillic acid levels [58].

2. Glucocorticoids and cognition

2.1. Arousal, attention and cortisol

Subjective reports and behavioral observations of arousal

and energy levels correlate with cortisol measures in

humans, providing support for cortisol’s role in sustaining

and facilitating cognitive functions. Administration of

glucocorticoids generally leads to increased subjective

arousal in humans [47,59]. Cortisol release is inhibited

during sleep [60] and increased in the morning hours [12].

The normal elevation of morning cortisol concentrations in

children and adults suggests a ‘wake up’ energy-enhancing

role for cortisol, and levels then decline as the day

progresses showing a nadir during evening hours.

The relationship between cortisol and psychological state

is reflected in the association between higher morning

cortisol levels and increased anticipatory states that require

enhanced glucose metabolism [15]. Moderately elevated

cortisol is advantageous for increased arousal and energy

expenditure in the organization of behavior. For example,

adults who report having high self-esteem had higher

cortisol levels and lower psychological distress than did

those with lower self-esteem [16]. Among children, those

who were described as bold and energetic had higher

cortisol levels than other children [61,62]. Extroverted

children, at the start of a new school year, tended to show

larger increases in cortisol than did more introverted

children [63]. This might reflect enhanced arousal levels

and increased ‘readiness to behave’ in these extroverted

children, who may be happily anticipating increased

challenges and social interaction with peers. Nevertheless,

the cortisol effect appears nonspecific; children described as

behaviorally inhibited also tended to have higher cortisol

concentrations, perhaps reflecting chronically enhanced

anticipatory anxiety for upcoming events [64,65]. The

unifying feature of the glucocorticoid elevation in these

apparently diverse personality subtypes may conceivably be

a state of heightened arousal and attention to the social

environment.

The relationship between cortisol and attention is

supported by self-report; for example, self-reported con-

centration improves with acute, periodic increases in plasma

cortisol concentrations [59]. Although chronic cortisol

elevations have detrimental effects on attention, short-term

moderate and high doses of glucocorticoids appear to have

no negative effects on sustained or selective attention in

humans [66,67]. Additionally, results of animal studies

suggest that periodic glucocorticoid elevations may enhance

focused attention toward an emotionally arousing stimulus

[68,69] by increasing the availability of norepinephrine [70,

71]. Increased glucocorticoid concentrations may conse-

quently allow mobilization of cognitive resources and

increase the chance of survival through enhanced memory

for these emotionally arousing events [72]. When gluco-

corticoid concentrations increase, occupation of GRs

appears to influence perceptual detection thresholds to aid

in focused attention on the perceived stimulus, to the

exclusion of irrelevant stimuli [73]. Anticipation is one

cognitive arousal state that allows enhancement of focused

attention towards an event, and is also associated with

cortisol elevations [74]. Presumably, the cortisol elevation

may allow the animal to prepare cognitive resources for

engagement toward the anticipated situation. When optimal

arousal levels and attentional systems are established,

higher-order cognitive mechanisms can proceed.

2.2. Perception, memory and cortisol

In general, engagement of any cognitive process requires

energy expenditure, which, in turn, is facilitated by

glucocorticoids through their role in glucose metabolism.

These operations are dependent on the coordination of

various brain areas within functional anatomical systems.

When emotionally arousing stimuli are processed, the

amygdala, medial temporal regions, and prefrontal cortex,

particularly medial and orbitofrontal cortices, appear to be

important for perception of and episodic memory for this

type of stimuli [75,76]. These brain regions also have

functional connections with brainstem areas important for

arousal and attention [77,78].

The amygdala plays major roles in the evaluation of a

variety of emotionally salient stimuli [79 – 82], and

electrical stimulation of the amygdala results in increased

cortisol concentrations [83]. Human studies illustrate that

perception of negative affective stimuli can result in

elevated cortisol levels [84], and cortisol administration

can influence response to negative stimuli in a dose-

dependent manner [85]. For example, the enhancing effects

of glucocorticoids on acoustic startle reflex differ depending

on dose; 5 mg of hydrocortisone can enhance acoustic

startle eyeblink reflex magnitude, while 20 mg can reduce

the magnitude [85]. Both low and high glucocorticoid levels

are also associated with deficits in memory performance,

indicating that glucocorticoid effects on this cognitive

domain follows the ‘inverted U-shaped’ curve such that

certain concentrations of cortisol are necessary for optimal

memory consolidation [30,86–89]; these effects appear to

complement glucocorticoids’ effects on electrophysiologi-

cal functioning in the hippocampus in which moderate, but

not low and high, glucocorticoid concentrations are optimal

for long term potentiation and primed burst potentiation [90,

91]. The circadian rhythm of cortisol can also influence the

effects of exogenous cortisol administration on memory

consolidation. Although elevated cortisol concentrations

resulting from glucocorticoid administration or stress are
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typically associated with declarative memory deficits [66,

92–94], glucocorticoid administration (35 mg hydrocorti-

sone) during the afternoon, when cortisol concentrations are

substantially lower than morning concentrations, can

enhance declarative memory performance [95]. Finally,

varied findings of glucocorticoid modulation of memory

may be due to different effects on memory consolidation and

memory retrieval. Glucocorticoids administered 30–60 min

prior to retention testing impairs long-term memory

performance [30,96] while having no discernable effect on

performance when administered prior to or following initial

learning when the stimuli are non-arousing [96].

Regions of the amygdala and hippocampus, which

contain GRs and MRs [8,9], participate in a memory system

specific to autobiographical (episodic) events [97]. Corti-

sol’s facilitory effects on memory at moderate concen-

trations have been shown to involve interaction between the

basal lateral amygdala, basal ganglia and hippocampus [75,

98]. Acute glucocorticoid administration can lead to

increased spontaneous cell firing in the amygdala [99] and

decreased glucose utilization in the hippocampus [4].

Glucocorticoid administration can increase startle reflexes

in humans at low doses [85], can decrease startle reflexes to

emotional stimuli at larger doses, and can enhance memory

for emotionally-valenced, compared to neutrally-valenced,

pictures [100]. In the case of memory consolidation for a

particular event, glucocorticoids appear to broadcast the

salience of the event to diverse brain regions, such as the

hippocampus [98], via activation of the basal lateral

amygdala, due in part to interactions with the noradrenergic

system, amplifying these signals [86,98,101–103]. Neuro-

chemical lesions of the basal lateral nucleus blocks the

memory-enhancing properties of glucocorticoids [104].

Cholinergic mechanisms are equally important to the

consolidation of emotional memory; administration of

muscarinic antagonists block the facilitatory effects of

glucocorticoids on emotional memory consolidation [103].

Both human and animal research suggests that the memory-

enhancing effects of glucocorticoids may be especially

relevant to emotional memory [86,100].

3. Consequences of glucocorticoid elevation

3.1. Cortisol, fear and anxiety

During states related to fear or anxiety, glucocorticoids

are generally elevated [105], and if an animal is already

fearful, glucocorticoid administration can lead to increased

response to and memory of the experience of fear, as

measured by increases in freezing behavior [68,69]. For

example, freezing responses to conditioned stimuli were

potentiated by high-dose corticosterone treatments in rats

[69]. Cortisol is important for sustained fear-related

responses, for efficient cognitive appraisal of events, and

for the normal development and expression of behavior

[106,107]. Glucocorticoids also facilitate physiological

responses to other types of stressors. For example, when

glucocorticoids are not available, as in the case of

adrenalectomized animals, physiological stressors such as

hemorrhagic, hypoxic or surgical stress result in lower

survival rates [108–110]. Such animals cannot mobilize or

sustain protective, compensatory, physiological responses

to these stressors.

The experience of fear generally precedes the rise in

cortisol. Corticotropin-releasing hormone (CRH) is one

mechanism through which glucocorticoids may mediate

behavioral responses; CRH is well-known to mediate a

variety of fear-related behaviors [111–114]. Elevated

cortisol concentrations promote the facilitation of CRH

gene expression in the amygdala and the bed nucleus of the

stria terminalis, which consequently can enhance the

perception of fear- and anxiety-inducing stimuli and fear-

related behaviors (see Fig. 2) [7,114–116]. Exposure to a

stress- or fear-eliciting stimulus, associated with increased

plasma cortisol concentrations, can lead to increases in

cortisol and CRH in the amygdala [117] which, in turn, can

promote increased norepinephrine cell activity in the locus

ceruleus [111,118,119]. The arousal produced by this

combination of effects appears to enhance memory for

fearful or anxiety-inducing events. The induction of CRH

gene expression in the central nucleus of the amygdala,

along with the facilitation of norepinephrine in the basal

lateral region of the amygdala [86] thus appear to subserve

an important mechanism for sustained fear and memory for

fear-inducing events. The role of the amygdala in cognitive

appraisal has been characterized as detection of discrepancy

or uncertainty in the environment [120]. Recruitment of

cognitive resources when presented with ambiguous,

discrepant, or potentially threatening stimuli may be an

important role of the amygdala in particular and glucocorti-

coid actions within the context of the extra-hypothalamic

system.

3.2. Negative consequences of cortisol elevation

Constant elevation of glucocorticoids can lead to adverse

physiological and cognitive consequences [121]. Prolonged

exposure to elevated cortisol concentrations can result in

fatigue, depression, apathy, and impaired concentration [47,

50,122]. Long-term consequences of continued cortisol

elevation within the context of repeated stress includes

neural atrophy in the hippocampus [123,124] and medial

prefrontal cortex [125], decreases in bone mineral density

[126] and compromised immune system function [121].

Cognitively, prolonged high levels of cortisol can exert

deleterious effects on certain types of memory, but the

performance effects are dependent on the timing and length

of exposure. Short- and long-term effects of glucocorticoid

elevation on spatial and visuospatial memory are complex

and appear to differ for acute and chronic exposures.

Acutely increased endogenous glucocorticoids resulting
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from a stressor can enhance spatial memory [127], while

chronic glucocorticoid administration can lead to deficits in

spatial memory performance [128]. Studies consistently

report deficits in verbal and declarative memory when high

concentrations of glucocorticoids are present [66,129]. In

contrast, lower elevations of cortisol for brief time periods

(e.g. a dose administered during afternoon hours when

endogenous circadian secretion is low) do not significantly

affect memory functioning, and enhanced memory per-

formance [95]. Additionally, higher concentrations do not

appear to significantly impact procedural memory, arousal,

attention, or executive functions unless extreme cortisol

levels are sustained over a prolonged period of time [130].

It has been hypothesized that the disruption of cognitive

functions, particularly certain types of memory, from

chronic glucocorticoid elevation during repeated stress

may result from neural atrophy [121] via facilitation of

excitatory amino acid-mediated toxicity [28,123]. The

primary region of interest in rat studies of glucocorticoid-

induced neural deterioration has been the hippocampal

formation [5,124]. However, neuronal atrophy in the

hippocampus may not be directly responsible for cognitive

impairments observed in those chronically exposed to

elevated glucocorticoids. Damage to the hippocampal

CA3 region results in elevated corticosterone levels and

memory impairments. Administration of metyrapone, a

glucocorticoid-synthesis inhibitor that reduces glucocorti-

coid concentrations to basal levels, reverses the memory

impairments associated with CA3 lesions [131]. The

impairments apparently are dependent on elevated

glucocorticoids, as animals with both CA3 lesions and

metyrapone treatment who also received corticosterone

supplementation displayed memory impairments similar to

lesioned animals without metyrapone treatment [131].

Because glucocorticoid activity in the amygdala has been

shown to play a role in memory impairments, this study

suggests that the memory impairments associated with

hippocampal atrophy may also be dependent on glucocorti-

coid activity in the basolateral amygdala [131,132].

3.3. Cortisol, brain and psychopathology

The perception and experience of emotionally evocative

stimuli can increase cortisol concentrations [133,134] and

activate circuits that are, by inference, important for

effectively processing and experiencing emotion in healthy

individuals [76,135,136]. Cortisol also is known to facilitate

neural processing in regions of the brain that underlie

information processing of emotional events, perhaps via the

induction of CRH gene expression in the central nucleus of

the amygdala [137,138]. Importantly, the induction of these

central states can be long lasting, so that the central

activation (elevated levels of CRH) and the experience of

fear, anxiety, or other negative emotional states may persist

even while systemic cortisol concentrations decrease to

basal levels [137,139].

Many individuals who suffer from depression show

abnormalities in cortisol secretion when the system is

challenged [140–142]. Increases in cortisol concentrations

in depression are associated with impaired cognitive

functioning [143–146]. Abnormalities in cortisol reponse

under stress conditions described in dysphoric individuals

have been associated with performance deficits on tests that

employ emotional stimuli [147]. Behaviorally, excessive

perceptual bias toward perceiving negative stimuli is

influenced by normal mood changes and by pathalogical

mood states [148 – 150]. In healthy adults, induced

depressed mood results in a sad interpretation of facial

expressions that are normally perceived as neutral or

ambiguous [151,152], and evidence exists that patients

with depression tend to judge faces as expressing more

negative emotion when compared to healthy, nonpsychiatric

subjects’ judgments [153–155] and to show increased

attention toward negative emotional stimuli [150]. Patients

Fig. 2. Cortisol, CRH and amygdala in fear/anxiety. (A) Digitized images of CRH mRNA in the CeA in corticosterone- (4 mg) or vehicle-treated rats. (B)

Freezing responses of rats in the retention test in corticosterone-treated and vehicle-treated rats. Corticosterone administration was associated enhanced

emotional memory, with increased duration of freezing behavior. Thompson et al., 2001, Society for Neuroscience abstract.
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with depression also show autobiographical memory

deficits in which negatively-valenced memories are avail-

able for recall but positive memories are less accessible

[156,157] suggesting altered attention to negative events at

the time of encoding and/or restricted access to positive

memories at the time of retrieval.

Imaging studies reveal that several regions of the brain

implicated in these emotional processes have abnormal

glucose metabolism and, in some cases, significant

relationships between cortisol secretion and metabolic

activity during major depression have been described

[158,159]. For example, in unipolar and bipolar depressed

subjects, glucose metabolism is elevated in the amygdala,

and stressed plasma cortisol concentrations were correlated

positively with this activation in the same depressed

patients, as Fig. 3 illustrates [158,159]. Additionally,

functional imaging studies of mood disordered subjects

described abnormal amygdala responses to affective stimuli

[160–162]. The effects of cortisol may influence a limbic-

thalamo-cortical circuit through its influence on amygdala

activation, orbitofrontal cortical regions, and ventral pre-

frontal cortical areas such as the ventral anterior cingulate

cortex [159,163,164]. Structural abnormalities in the

hippocampus [165–167] of mood disordered patients have

also been described, and can potentially be attributed to

cortisol hypersecretion [165].

Glucocorticoid levels may alter functioning of the

amygdala and prefrontal cortex during states of depression,

Fig. 3. Amygdala and prefrontal cortex activation in depression [168]. (A) Areas of abnormally increased CBF in familial MDD. Analyses show areas of

increased CBF in depressed patients relative to controls in the amygdala and medial orbital cortex. Anterior is to the left. (B) Relationship between plasma

cortisol concentrations measured immediately prior to the PET radiotracer injection and normalized glucose metabolism in the left amygdala for an MDD

sample ðn ¼ 15Þ [159].
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Fig. 4. Neurobiological systems underlying perception, memory and experience of emotion in depression. This model combines findings from neurophysiological and neuroimaging studies and superimposes

hypothesized roles for these structures in the cognitive experience of depression. Brain abnormalities in depression include areas from the frontal-subcortical circuit (outlined in blue) and the hippocampal-amydala

complex (outlined in green, along with medial temporal cortex). Effects of glucocorticoids on these systems are outlined in red.
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which has implications for cognition and behavior. The

amygdala, particularly the left amygdala, and the medial

orbitofrontal cortex both show abnormal elevations in

cerebral blood flow and metabolism in depression [163,

164]. Additionally, the amygdala activation observed in

depressed patients does not habituate normally to faces

expressing sadness, when compared to healthy subjects

[168]. Decreases in ventral prefrontal cortex metabolism are

associated with decreases in depressive symptoms during

antidepressant treatment [163,164,169–171]; the abnorm-

alities of the ventral prefrontal cortex are not observed

during remission from depression and are presumably state-

dependent [170]. Postmortem studies revealed a variety of

histopathalogical changes within the orbitofrontal cortex,

ventral anterior cingulate cortex and subiculum of the

hippocampus during depression, which include glial cell

and neuropil reduction [172,173] which may result from an

interaction of glucocorticoids in the presence of glutamate

transmission during recurrent stress [38,123].

Though much of the evidence from human research is

correlational, the converging evidence from the cognitive,

neuroendocrine, psychiatric and neuroimaging literature

supports the potential role of glucocorticoids in both normal

and abnormal emotional cognition, experience, and beha-

vior. Fig. 4 illustrates functional connections between brain

regions important for episodic memory and those that are

part of frontal-subcortical circuits, and how these circuits

may be dysfunctional in mood disorders to create observed

deficits in perception, memory, and experience of emotional

events.

The amygdala and hippocampus show abnormalities in

mood disorders described above that may be partially

attributed to the actions of glucocorticoids. Glucocorti-

coid effects shown in the figure have been observed in

vivo in animals and in vitro in tissue culture prep-

arations. Mood disordered patients have decreased

5HT1A receptors in the hippocampus [174–176], and

elevated glucocorticoid concentrations can reduce the

transcription of 5HT1A mRNA [177–179]. Glucocorti-

coids can influence dopamine activity in the striatum,

and can result in increases in dopamine transmission in

the nucleus accumbens shell [180–182]. Dopamine

activity in the striatum has been associated with

anhedonia, reversible with antidepressant treatment

[183–185]. Glucocorticoids interact with the noradren-

ergic system [102,132,186], and in the amygdala this

interaction is important for consolidating emotional

memories [102,132] and for optimally signaling the

hippocampus [91,98]. Increased CRH mRNA expression

in the central nucleus of the amygdala has been linked to

increased glucocorticoid concentrations [7,33,114,116],

and to enhanced emotional memory [68,69,114,116,187].

Attentional, perceptual and memory deficits for emotional

stimuli associated with depression can be attributed at

least in part to an amygdala-hippocampal dysfunction. It

has been hypothesized that the reciprocal connections of

the amygdala-hippocampal formation with the frontal-

subcortical circuit can contribute to observed deficits in

emotional cognition and behavior in depressed patients,

such as negative interpretation of events and deficits in

reward-based decision-making.

Abnormalities in regional brain activation, cortisol

regulation, and cognitive processing in mood disorders,

when considered within the framework of both animal and

human neuroendocrine studies, demonstrate that the

relationship between depression and cortisol plays a critical

role in the morbidity of depression [188].

4. Conclusions

Glucocorticoids participate in sustaining circadian

energy levels in mammals. They facilitate cognition and

behavior pertaining to fear and anxiety responses by

initiating changes in various functional brain systems that

underlie cognitive mechanisms. These effects are produced

via interactions with classical neurotransmitter and neuro-

peptide systems. Cortisol is necessary to sustain behavior

and plays a protective role, but has deleterious effects on

physiology and cognition during chronic long-term release

[123].

Various cognitive domains contribute to the interaction

between the animal and its environment, and glucocorti-

coids influence these cognitive operations. Enhanced

arousal, through the interaction of glucocorticoids with

norepinephrine and dopamine, allows the animal to orient,

focus and sustain attention on perceived events and mobilize

resources for necessary decision-making and action.

Glucocorticoids participate in attention and emotional

memory processes through interactions with norepi-

nephrine, while decision-making based on salience requires

glucocorticoids and dopamine. Cortisol can potentiate the

experience of fear and anxiety through the activation of

extrahypothalamic CRH. Chronic high cortisol levels are

detrimental to a number of cognitive domains, and this has

implications for cognitive/emotional processing and

behavior.

Overactivation of the amygdala and associated cortical

areas during depression may alter the experience of these

patients across a number of cognitive domains, involving

attention, perception and memory systems normally

recruited by cortisol. For example, information relayed

to the amygdala may be influenced by amygdala over-

activity potentiated partly through excessive glucocorti-

coid activity. The abnormal expression of serotonin 1A

receptors found in depressed patients may also be linked

to abnormal cortisol regulation. Ongoing research has a

major goal to better understand the specific roles of

glucocorticoids in mood disorders and whether the

contributions of glucocorticoids are premorbid or emerge

following symptom presentation.
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